

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

4761

Mechanics 1

Friday 14 JANUARY 2005

Morning

1 hour 30 minutes

Additional materials: Answer booklet Graph paper MEI Examination Formulae and Tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.

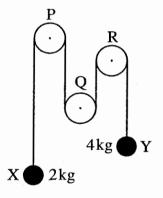
INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g m s^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.
- The total number of marks for this paper is 72.

Section A (36 marks)

1 The position vector, \mathbf{r} , of a particle of mass 4 kg at time t is given by

$$\mathbf{r} = t^2 \mathbf{i} + (5t - 2t^2) \mathbf{j},$$


where i and j are the standard unit vectors, lengths are in metres and time is in seconds.

(i) Find an expression for the acceleration of the particle.

The particle is subject to a force F and a force 12 j N.

(ii) Find F.

2 Particles of mass 2 kg and 4 kg are attached to the ends X and Y of a light, inextensible string. The string passes round fixed, smooth pulleys at P, Q and R, as shown in Fig. 2. The system is released from rest with the string taut.

- (i) State what information in the question tells you that
 - (A) the tension is the same throughout the string,
 - (B) the magnitudes of the accelerations of the particles at X and Y are the same. [2]

The tension in the string is TN and the magnitude of the acceleration of the particles is $a \,\mathrm{m \, s^{-2}}$.

- (ii) Draw a diagram showing the forces acting at X and a diagram showing the forces acting at Y. [1]
- (iii) Write down equations of motion for the particles at X and at Y. Hence calculate the values of T and a. [5]

[3]

[4]

- 3 A particle is in equilibrium when acted on by the forces $\begin{pmatrix} x \\ -7 \\ z \end{pmatrix}, \begin{pmatrix} 4 \\ y \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ 4 \\ -7 \end{pmatrix}$, where the units are newtons.
 - (i) Find the values of x, y and z. [4]

(ii) Calculate the magnitude of
$$\begin{pmatrix} 5\\4\\-7 \end{pmatrix}$$
. [2]

- 4 A particle is projected vertically upwards from a point O at 21 ms^{-1} .
 - (i) Calculate the greatest height reached by the particle. [2]

When this particle is at its highest point, a second particle is projected vertically upwards from O at 15 ms^{-1} .

- (ii) Show that the particles collide 1.5 seconds later and determine the height above O at which the collision takes place. [6]
- 5 A small box B of weight 400 N is held in equilibrium by two light strings AB and BC. The string BC is fixed at C. The end A of string AB is fixed so that AB is at an angle α to the vertical where $\alpha < 60^{\circ}$. String BC is at 60° to the vertical. This information is shown in Fig. 5.

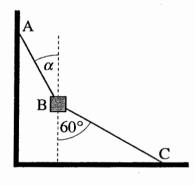
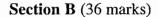


Fig. 5


- (i) Draw a labelled diagram showing all the forces acting on the box.
- (ii) In one situation string AB is fixed so that $\alpha = 30^{\circ}$.

By drawing a triangle of forces, or otherwise, calculate the tension in the string BC and the tension in the string AB. [4]

(iii) Show carefully, but briefly, that the box cannot be in equilibrium if $\alpha = 60^{\circ}$ and BC remains at 60° to the vertical. [2]

[Turn over

[1]

6 In this question take g as 10 m s^{-2} .

A small ball is released from rest. It falls for 2 seconds and is then brought to rest over the next 5 seconds. This motion is modelled in the speed-time graph Fig. 6.

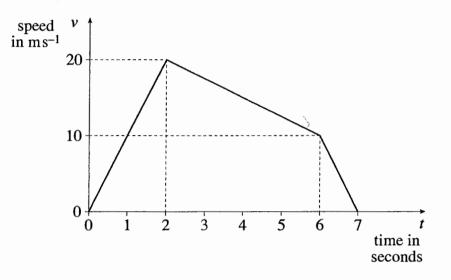
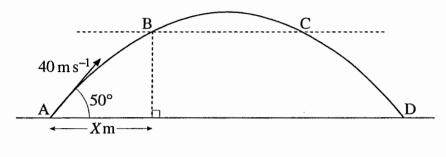


Fig. 6

For this model,

- (i) calculate the distance fallen from t = 0 to t = 7, [3]
- (ii) find the acceleration of the ball from t = 2 to t = 6, specifying the direction, [3]
- (iii) obtain an expression in terms of t for the downward speed of the ball from t = 2 to t = 6, [3]
- (iv) state the assumption that has been made about the resistance to motion from t = 0 to t = 2.


[1]

The part of the motion from t = 2 to t = 7 is now modelled by $v = -\frac{3}{2}t^2 + \frac{19}{2}t + 7$.

- (v) Verify that v agrees with the values given in Fig. 6 at t = 2, t = 6 and t = 7. [2]
- (vi) Calculate the distance fallen from t = 2 to t = 7 according to this model. [7]

7 The trajectory ABCD of a small stone moving with negligible air resistance is shown in Fig. 7. AD is horizontal and BC is parallel to AD.

The stone is projected from A with speed 40 ms^{-1} at 50° to the horizontal.

- (i) Write down an expression for the horizontal displacement from A of the stone *t* seconds after projection. Write down also an expression for the vertical displacement at time *t*. [3]
- (ii) Show that the stone takes 6.253 seconds (to three decimal places) to travel from A to D. Calculate the range of the stone. [5]

You are given that X = 30.

(iii) Calculate the time it takes the stone to reach B. Hence determine the time for it to travel from A to C.

[5]

(iv) Calculate the direction of the motion of the stone at C.

Mark Scheme

Paper 4761Name Mechanics 1	Session Jan	Year 2005	
----------------------------	-------------	-----------	--

Q 1		mark		
(i)	Differentiate $\mathbf{v} = 2t \mathbf{i} + (5 - 4t) \mathbf{j}$ Differentiate $\mathbf{a} = 2 \mathbf{i} - 4 \mathbf{j}$	M1 A1 M1 F1	At least 1 cpt correct Award for RHS seen Do not award if i and j lost in v . At least 1 cpt correct. FT FT from their 2 component v	4
(ii)	F + 12 j = 4(2 i - 4 j) F = 8 i -28 j	M1 A1 A1	N2L. Allow $\mathbf{F} = mg \mathbf{a}$. No extra forces. Allow 12j omitted Allow wrong signs otherwise correct with their vector \mathbf{a} . cao	3
	total	7		

Q 2		mark		
(i) (A) (B)	the pulleys are smooth and the string is light the string is inextensible	E1 E1	Accept only 'the pulley is smooth'.	2
(ii)	Diagrams	B1	All forces present with labels and arrows. Acc not reqd.	1
	For X, N2L upwards T-2g = 2a For Y, N2L downwards 4g - T = 4a Solve for a and T $a = \frac{g}{3}$ (3.27 (3 s. f.)) $T = \frac{8}{3}g$ (26.1 (3 s. f.))	M1 A1 A1 A1 F1	N2L. Allow <i>F</i> = <i>mga</i> . All forces present Award for equation for X or Y or combined Any form Any form	
				5
	total	8		

Paper 4761 Name Mechanic	s 1 Session Jan	Year 2005	
--------------------------	-----------------	-----------	--

Q 3		mark		
(i)	$\begin{pmatrix} x \\ -7 \\ z \end{pmatrix} + \begin{pmatrix} 4 \\ y \\ -5 \end{pmatrix} + \begin{pmatrix} 5 \\ 4 \\ -7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ Equating components gives x = -9, y = 3, z = 12	M1 A1 A1 A1	[Allow SC 2/4 if 9, -3, -12 obtained]	4
(ii)	We need $\sqrt{5^2 + 4^2 + (-7)^2}$ = $\sqrt{90}$ or 9.48683 so 9.49 (3 s. f.)	M1 A1	Any reasonable accuracy	2
	total	6		

Q 4		mark		
(i)	Height reached by first particle is given by $0 = 21^2 - 2 \times 9.8 \times s$	M1	Other methods must be complete. Allow $g = \pm 9.8, \pm 10$	
	$0 = 21 - 2 \times 9.8 \times s$	1011		
	so <i>s</i> = 22.5 so 22.5 m	A1	Accept with consistent signs	2
	Sol (1)			
(ii)	t seconds after second particle projected its	M1	Allow $g = \pm 9.8, \pm 10$	
	height is $15t - 4.9t^2$	A1		
	and the first particle has height $22.5 - 4.9t^2$ (or $21t - 4.9t^2$)	M1	Allow $g = \pm 9.8, \pm 10$	
		A1	Award only if used correctly	
	either			
	Sub $t = 1.5$ to show both have same value	E1	(or sub $t = 3.64$ into $21t - 4.9t^2$ for 1^{st} & $t = 1.5$ for 2^{nd})	
	State height as 11.475 m	A1	cao. Accept any reasonable accuracy. Don't award if only one correctly used equation obtained.	
	or			
	$15t - 4.9t^2 = 22.5 - 4.9t^2$	M1		
	giving $t = 1.5$ and height as 11.475 m	A1	Both. <i>t</i> shown. Ht cao (to any reasonable accuracy)	
	Sol (2)			
	t seconds after second particle projected its	M1	Allow $g = \pm 9.8, \pm 10$	
	height is $15t - 4.9t^2$	A1		
	and the first particle has fallen $4.9t^2$	B1		
	Collide when $15T - 4.9T^2 + 4.9T^2 = 22.5$	M1	Or other correct method	
	so $T = 1.5$	E1		
	$H = 22.5 - 4.9 \times 1.5^2 = 11.475 \mathrm{m}$	A1	cao. Accept any reasonable accuracy. Don't award if	
			only one correctly used equation obtained.	
				6
	total	8		

Paper 4761 Name Mee	chanics 1 Session Jan	Year 2005	
---------------------	-----------------------	-----------	--

Q 5		mark		
(i)	$\begin{array}{c} T_{\rm BA} \\ 400 \text{ N} \end{array} \xrightarrow{T_{\rm BC}} T_{\rm BC} \end{array}$	B1	Different labels. All forces present with arrows in correct directions. Condone no angles.	1
(ii)	Using triangle of forces $T_{\rm BC}$	M1	Attempt at triangle of forces. Ignore angles and arrows. Accept 90, 60, 30 triangle.	
	$T_{\rm BA}$	B1	Triangle, arrows, labels and angles correct	
	N Triangle isosceles so tension in BC is 400 N	A1	cao	
	Tension in BA is $2 \times 400 \times \cos 30 = 400\sqrt{3}$ N	F1	FT BC only	
	(693 N, (3 s. f.))		[If resolution used, M1 for 1 equn; M1 for 2^{nd} equn + attempt to elim; A1; F1. For M marks all forces present but allow $s \leftrightarrow c$ and sign errors. No extra forces. If Lami used: M1 first pair of equations in correct format, condone wrong angles. A1. M1 second pair in correct format, with correct angles.F1 FT their first answer if necessary.]	4
(iii)	Resolve at B perpendicular to the line ABC	E1	Attempt to argue unbalanced force	
	Weight has unbalanced component in this direction	E1	Complete, convincing argument.	
			[or Resolve horiz and establish tensions equal E1 Resolve vert to show inconsistency. E1]	2
	total	7		

Paper 4761	Name Mechanics 1	Session Jan	Year 2005		l
------------	------------------	-------------	-----------	--	---

Q 6		mark		
(i)	Area under curve $0.5 \times 2 \times 20 + 0.5 \times (20 + 10) \times 4 + 0.5 \times 10 \times 1$ = 85 m	M1 B1 A1	Attempt to find any area under curve or use const accn results Any area correct (Accept 20 or 60 or 5 without explanation) cao	3
(ii)	$\frac{20-10}{4} = 2.5$ upwards	M1 A1 B1	$\Delta v / \Delta t$ accept ±2.5 Accept – 2.5 downwards (allow direction specified by diagram etc). Accept 'opposite direction to motion'.	3
(iii)	v = -2.5t + c v = 20 when t = 2 v = -2.5t + 25	M1 M1 A1	Allow their <i>a</i> in the form $v = \pm at + c$ or $v = \pm a(t-2) + c$ cao [Allow $v = 20 - 2.5(t-2)$] [Allow 2/3 for different variable to <i>t</i> used, e.g. <i>x</i> . Allow any variable name for speed]	3
(iv)	Falling with negligible resistance	E1	Accept 'zero resistance', or 'no resistance' seen.	1
(v)	$-1.5 \times 4 + 9.5 \times 2 + 7 = 20$ -1.5 \times 36 + 9.5 \times 6 + 7 = 10 -1.5 \times 49 + 9.5 \times 7 + 7 = 0	E1 E1	One of the results shown All three shown. Be generous about the 'show'.	2
(vi)	$\int_{2}^{7} (-1.5t^{2} + 9.5t + 7)dt$ = $\left[-0.5t^{3} + 4.75t^{2} + 7t\right]_{2}^{7}$ = $\left(-\frac{343}{2} + \frac{19 \times 49}{4} + 49\right) - \left(-4 + 19 + 14\right)$	M1 A1 A1 A1 A1 M1	Limits not required A1 for each term. Limits not required. Condone $+ c$ Attempt to use both limits on an integrated expression	
	$= \begin{pmatrix} 2 & 4 & 142 \end{pmatrix} (4113114)$ $= 81.25 m$ total	A1 A1 19	Correct substitution in their expression including subtraction (may be left as an expression). cao.	7

Paper 4761Name Mechanics 1	Session Jan	Year 2005		
----------------------------	-------------	-----------	--	--

Q 7		mark		
(i)				
	Horiz $(40\cos 50)t$	B1		
	Vert $(40\sin 50)t - 4.9t^2$	M1	Use of $s = ut + 0.5at^2$ with $a = \pm 9.8 \text{ or } \pm 10$.	
			Allow $u = 40$. Condone s \leftrightarrow c.	
		A1	Any form	3
(ii)				
	Need $(40\sin 50)t - 4.9t^2 = 0$	M1	Equating their <i>y</i> to zero. Allow quadratic <i>y</i> only	
	so $t = \frac{40 \sin 50}{4.9}$	M1	Dep on 1 st M1. Attempt to solve.	
	= 6.2534 so 6.253 s (3 d. p.)	E1	Clearly shown	
			[or M1 (allow $u = 40$ and $s \leftrightarrow c$) A1 time to greatest height; E1]	
	Range is (40 cos 50)×6.2534	M1	Use of their horiz expression	
	= 160.78 so 161 m (3 s. f.)	A1	Any reasonable accuracy	5
		X (1		
(iii)	Time AB is given by $(40 \cos 50)T = 30$ so $T = 1.16679$ so 1.17 s	M1 A1	Equating their linear x to 30.	
	then			
	either By symmetry, time AC is time AD – time AB	M1	Symmetry need not be explicit. Method may be implied.	
	30		Any valid method using symmetry.	
	so time AC is 6.2534 $-\frac{30}{40\cos 50}$			
	= 5.086 so 5.09 s (3 s. f.)	A1	cao	
	or height is $(40 \sin 50)T - 4.9T^2$			
	and we need			
	$(40\sin 50)t - 4.9t^2 = (40\sin 50)T - 4.9T^2$	M1	Complete method to find time to second occasion at that	
	solved for larger root		height	
	i.e. solve $4.9t^2 - (40\sin 50)t + 29.08712 = 0$			
	for larger root giving 5.086	A1	cao	4
(iv)				
	$\mathbf{I} = 40\cos 50$	B1	Must be part of a method using velocities.	
	$f = 40 \sin 50 - 9.8 \times 5.086$	M1	Use of vert cpt of vel Allow only sign error.	
	\$	A1	FT use of their 5.086	
	Need arctan $\frac{9}{10}$	M1	May be implied. Accept $\arctan\frac{\pounds}{\pounds}$ but not use of \pounds .	
	So -36.761°	A1	Accept ±36.8 or equivalent. Condone direction not	
	so 36.8° below horizontal (3 s.f.)		clear.	5
	total	17		